Characterizing Rechargeable IPG Charge Cycle Time in DBS

Xiaoyi Yu1, Karl Steinke1, Richard Mustakos1
1Boston Scientific Neuromodulation, Valencia, California

INTRODUCTION

Rechargeable Deep Brain Stimulation (DBS) Implantable Pulse Generators (IPGs) have different battery capacities, which result in differing recharge intervals. Three tests were conducted to characterize the discharge cycle of the VERCISE™ IPGs during various use models. The use models included a standard amplitude, using typical clinical IPG parameters, a high amplitude, which doubled the current, compared to the standard settings, and a low amplitude, which halved the current, compared to the standard settings.

MATERIALS & METHODS

Study Design
- Standard set up consisted of a VERCISE IPG with two BSN 2201 leads attached, in a saline solution at 37°C. Measured impedance was nominally 1000 Ω. Average 1012 Ω, Min 880 Ω, Max 1499 Ω, Std Dev 101 Ω. Stimulation settings were 60 μs pulses at 130 Hz, providing current through two cathodic contacts, one on each lead, using the immersed case as the anode. IPGs were interrogated with the Remote Control (RC) 3 times a week to simulate patient interaction.
- Sample size:
 - n = 7 for standard amplitude settings
 - n = 7 for high amplitude settings
 - n = 4 for low amplitude settings

Standard Treatment Parameters
- Amplitude: 3.0 milliamps
 - Pulse Width: 60 microseconds
 - Frequency: 130 Hertz
 - Contacts: 1 on each of 2 Leads

High Amplitude Treatment Parameters
- Amplitude: 6.0 milliamps
 - Pulse Width: 60 microseconds
 - Frequency: 130 Hertz
 - Contacts: 1 on each of 2 Leads

Low Amplitude Treatment Parameters
- Amplitude: 1.5 milliamps
 - Pulse Width: 60 microseconds
 - Frequency: 130 Hertz
 - Contacts: 1 on each of 2 Leads

RESULTS

Standard Settings (3.0 mA)
- Average Stimulation Time: 30 days
 - 16 Hours
- Minimum Stimulation Time: 27 days
 - 16 hours
- Maximum Stimulation Time: 33 days
 - 4 hours
- Standard Deviation: 1 Days
 - 16 hours
- All VERCISE IPGs provided 27 days of stimulation before low battery voltage forced any IPG to shut down.
- All VERCISE IPGs provided stimulation for 19 days before requesting recharge. 4 IPGs provided at least 31 days of stimulation, and 1 provided 33 days of stimulation.

High Settings (6.0 mA)
- Average Stimulation Time: 14 days
 - 5 hours
- Minimum Stimulation Time: 12 days
- Maximum Stimulation Time: 15 days
 - 20 hours
- Standard Deviation: 1 Days
 - 8 hours
- All VERCISE IPGs provided 12 days of stimulation before any shut down due to low battery voltage.
- Three IPGs provided more than 14 days of stimulation.

CONCLUSIONS

- Boston Scientific VERCISE rechargeable DBS IPGs, at typical clinical parameters, may provide up to 4 weeks of stimulation between recharging cycles.
- At high amplitudes, they may provide up to 2 weeks of stimulation between charging cycles.
- At low amplitudes, they may provide up to 6 weeks of stimulation between recharging cycles.

Presented at NANS 2013
The Vercise Deep Brain Stimulation System is indicated for use in unilateral or bilateral stimulation of the subthalamic nucleus (STN) or internal globus pallidus (GPI) for treatment of levodopa-responsive Parkinson’s disease which is not adequately controlled with medication. The Vercise™ Deep Brain Stimulation System is indicated for use in unilateral or bilateral stimulation of internal globus pallidus (GPI) or the subthalamic nucleus (STN) for treatment of intractable primary and secondary dystonia, for persons 7 years of age and older.

Prescriptive Information All cited trademarks are the property of their respective owners. CAUTION: The law restricts these devices to sale by or on the order of a physician. Indications, contraindications, warnings and instructions for use can be found in the product labeling supplied with each device. Information for the use only in countries with applicable health authority product registrations.